Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex

نویسندگان

  • Dante S. Bortone
  • Shawn R. Olsen
  • Massimo Scanziani
چکیده

In layer 6 (L6), a principal output layer of the mammalian cerebral cortex, a population of excitatory neurons defined by the NTSR1-Cre mouse line inhibit cortical responses to visual stimuli. Here we show that of the two major types of excitatory neurons existing in L6, the NTSR1-Cre line selectively targets those whose axons innervate both cortex and thalamus and not those whose axons remain within the cortex. These corticothalamic neurons mediate widespread inhibition across all cortical layers by recruiting fast-spiking inhibitory neurons whose cell body resides in deep cortical layers yet whose axons arborize throughout all layers. This study reveals a circuit by which L6 modulates cortical activity and identifies an inhibitory neuron able to regulate the strength of cortical responses throughout cortical depth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a.

Layer 6 corticothalamic neurons are thought to modulate incoming sensory information via their intracortical axons targeting the major thalamorecipient layer of the neocortex, layer 4, and via their long-range feedback projections to primary sensory thalamic nuclei. However, anatomical reconstructions of individual layer 6 corticothalamic (L6 CT) neurons include examples with axonal processes r...

متن کامل

Two dynamically distinct inhibitory networks in layer 4 of the neocortex.

Normal operations of the neocortex depend critically on several types of inhibitory interneurons, but the specific function of each type is unknown. One possibility is that interneurons are differentially engaged by patterns of activity that vary in frequency and timing. To explore this, we studied the strength and short-term dynamics of chemical synapses interconnecting local excitatory neuron...

متن کامل

A Corticothalamic Switch: Controlling the Thalamus with Dynamic Synapses

Corticothalamic neurons provide massive input to the thalamus. This top-down projection may allow the cortex to regulate sensory processing by modulating the excitability of thalamic cells. Layer 6 corticothalamic neurons monosynaptically excite thalamocortical cells, but also indirectly inhibit them by driving inhibitory cells of the thalamic reticular nucleus. Whether corticothalamic activity...

متن کامل

Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis.

Intrinsic properties, morphology, and local network circuitry of identified layer 5 and layer 6 auditory corticothalamic neurons were compared. We injected fluorescent microspheres into the mouse auditory thalamus to prelabel corticothalamic neurons, then recorded and filled labeled layer 5 or layer 6 auditory cortical neurons in vitro. We observed low-threshold bursting in adult, but not juven...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2014